Role of microtubules and tea1p in establishment and maintenance of fission yeast cell polarity.
نویسندگان
چکیده
Microtubules and the protein tea1p have important roles in regulating cell polarity in the fission yeast Schizosaccharomyces pombe. Here, using combinations of drugs, environmental perturbations and genetic mutants, we demonstrate that once a cell polarity axis is established, microtubules have at best a minor role in maintaining the cortical actin cytoskeleton and the rate and direction of cell growth. In addition, we find that after perturbations that disrupt cell polarity and the cortical actin cytoskeleton, microtubules are not required for re-establishment of polarity per se. However, after such perturbations, the distribution of cytoplasmic microtubules plays an important role in dictating the position of sites of polarity re-establishment. Furthermore, this influence of microtubule distribution on site selection during polarity re-establishment requires the presence of tea1p, suggesting that tea1p is crucial for coupling microtubule distribution to the regulation of cell polarity. Our results suggest a model in which, at the cellular level, two distinct and separable mechanisms contribute to how tea1p regulates site selection during polarity re-establishment. First, tea1p remaining at cell tips after cortical depolarization can serve as a cortical landmark for microtubule-independent site selection; second, tea1p newly targeted to the cell cortex by association with microtubules can promote the formation of polarity axes de novo.
منابع مشابه
Role of bud6p and tea1p in the interaction between actin and microtubules for the establishment of cell polarity in fission yeast
BACKGROUND In many cell types, microtubules are thought to direct the spatial distribution of F-actin in cell polarity. Schizosaccharomyces pombe cells exhibit a regulated program of polarized cell growth: after cell division, they grow first in a monopolar manner at the old end, and in G2 phase, initiate growth at the previous cell division site (the new end). The role of microtubule ends in c...
متن کاملCell Polarity: A New Mod(e) of Anchoring
Microtubules play a central role in the establishment of cell polarity by directing the transport of polarity determinants to their site of action. Recent work has revealed a novel membrane-anchoring mechanism which complements the microtubule transport of the fission yeast polarity determinant tea1p to ensure its retention at the cell tip.
متن کاملRoles of fission yeast tea1p in the localization of polarity factors and in organizing the microtubular cytoskeleton
The cylindrical shape of the fission yeast cell is generated by linear polarized growth from its cell ends. Using immunofluorescence and live imaging microscopy, we have investigated the roles of the cell end marker tea1p in generating linear polarized growth. We found that tea1p is primarily transported on plus ends of microtubules from the vicinity of the nucleus to the cell ends, and that it...
متن کاملRegulation of a formin complex by the microtubule plus end protein tea1p
The plus ends of microtubules have been speculated to regulate the actin cytoskeleton for the proper positioning of sites of cell polarization and cytokinesis. In the fission yeast Schizosaccharomyces pombe, interphase microtubules and the kelch repeat protein tea1p regulate polarized cell growth. Here, we show that tea1p is directly deposited at cell tips by microtubule plus ends. Tea1p associ...
متن کاملTea4p links microtubule plus ends with the formin for3p in the establishment of cell polarity.
Microtubules regulate actin-based processes such as cell migration and cytokinesis, but molecular mechanisms are not understood. In the fission yeast Schizosaccharomyces pombe, microtubule plus ends regulate cell polarity in part by transporting the kelch repeat protein tea1p to cell ends. Here, we identify tea4p, a SH3 domain protein that binds directly to tea1p. Like tea1p, tea4p localizes to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 117 Pt 5 شماره
صفحات -
تاریخ انتشار 2004